Tetrahedron Letters, Vol.27, No.4, pp 507-508, 1986 0040-4039/86 \$3.00 + .00 Printed in Great Britain ©1986 Pergamon Press Ltd.

SYNTHESIS OF ARYLIMINES FROM N-SILYLAMIDES AND ARYLLITHIUM COMPOUNDS

Ben L. Feringa* and Johan F.G.A. Jansen Department of Chemistry, University of Groningen Nijenborgh 16, 9747 AG Groningen, The Netherlands

Abstract: Various arylimines were synthesized by the addition of N-silylated-N-alkyl-or Naryl-amides to aryllithium compounds.

The addition reaction of organolithium compounds $\underline{1}$ to the carbonyl group of N,N-disubstituted amides $\underline{2}$ is well known to yield carbonylcompounds $\underline{4}$ (eq. 1a).^{1,2} This reaction is particulary valuable in the synthesis of aldehydes from DMF^{1,2} or N-methylformanilide³ whereas N-(2-pyridyl)-N-methylformamide⁴ is preferred for similar reactions with Grignard reagents.

 $(X = H, CH_3, OCH_3; R = H, alkyl, aryl; R_1 = alkyl, aryl)$

In connection with synthetic studies using N-silylated-amides⁵ $\stackrel{2}{=}$ (R₂=Si(CH₃)₃ and N-silylated-lactams⁵ we have found that aryllithium compounds 1 readily react with amides 2 to give imines⁶ 5 instead of carbonyl compounds 4 (eq. 1b).

Treatment of a solution of phenyllithium in THF at -78° C with N-methyl-N-trimethylsilyl propionamide, either neat or as a solution in THF, and subsequent warming to room temperature gave after a standard work-up, N-methyl-ethylphenylimine in 73% yield. The results of the conversion of aryllithium compounds with several N-silylated amides are summarized in Table I. The imineformation is strongly dependant on the basicity of the lithium reagent as alkyllithium compounds only yielded products derived from deprotonation of the N-silylated acetamides. Isomerically pure imines were obtained from all formamides (entries 6, 10, 11) and N-methyl-N-trimethylsilylacetamides (entries 3, 7). The stereochemical assignment is based on comparison of ¹H-NMR data with those published. For the acetophenone- and 2-acetylfuran-imines (entries 3, 7), the E-configuration was established on basis of the observed coupling constants in the ¹H-NMR spectra (JH,H < 1.0 Hz for HC-C=N-CH).⁷

The imines 5 can be reduced in situ to amines [71%, (NaBH₁₁,CH₂OH); 75%, 83% and 60%, (LiAlH,, THF) for entries 1, 2, 3 and 4 respectively] or hydrolysed to aldehydes or ketones (e.g. entry 1, 80% phenylethylketone).

The present method also allows preparation of $aryl-\Delta^1$ -pyrrolines 7 from N-silylatedpyrrolidone 6, although yields are low sofar. Thus reaction of phenyllithium with 6 gave 20% of $\underline{7}$ after chromatography (identical with an independently prepared sample⁸) (eq. 2).

Table I	Synt	hesis of Arylin	nines	N ^{~^R1}		
		Aryl-	R	R ₁	yield(%)	a _{Z/E} b
	1	с _б н ₅	с ₂ н ₅	СНз	73	30/70
	2	C6H5	CH3	с ₂ й ₅	60	40/60
	3	C ₆ H ₅	снз	CH3	63	0/100
	ц	C6H5	C6H5	снз	77	-
	5	C6H5	C6H5	с _б й ₅	80	-
	6	C ₆ H ₅	н	C ₆ H ₅	55	0/100
	7	C ¹ H ₂ O	CH2	CH3	57	0/100
	8	C ¹ H ₂ O	C ^H	CH3	55	40/60
	9	слнзо	C ₆ H ₅	C6H5	79	45/55
	10	C ₆ H ₅	н	CH3	35	0/100
	11	(o-och3)C6H5	н	с ₆ н ₅	70	0/100

a. Isolated yield by distillation; b. Z/E ratio determined by NMR.

The elucidation of the stereochemical features of this new imine formation and the use of functionalized organolithium reagents is presently under investigation.

References

- 1. B.J. Wakefield in "Comprehensive Organometallic Chemistry", G. Wilkinson, F.G.A. Stone and E.W. Abel, eds., Pergamon, Oxford, 1982, vol. 7, chapter 44.
- B.J. Wakefield, "The Chemistry of Organolithium Compounds", Pergamon: Oxford, 1974.
 N.S. Narasimhan and R.S. Mali, Tetrahedron, 1975, <u>31</u>, 1005,
 D. Comins and A.I. Meyers, Synthesis, 1978, 403; and references cited therein.

- a) I. Fleming in "Comprehensive Organic Chemistry", D. Barton, and W.D. Ollis, eds., Pergamon, Oxford, 1979, chapter 13; b) E. Colvin, "Silicon in Organic Synthesis", Butterworths, London, 1981, chapter 19.
- 6. G. Tennant in "Comprehensive Organic Chemistry", D. Barton and W.D. Ollis, eds., Pergamon, Oxford, 1979, chapter 8.
- 7. H. Ahlbrecht, S. Fischer, Tetrahedron, 1970, 26, 2837.
- 8. W. Koller and P. Schlack, Chem. Ber. 1963, 96, 93.

(Received in UK 22 November 1985)